

INDIAN SCHOOL AL WADI AL KABIR

	PRE-MIDTERM (2023 - 24)	
Class: X	Sub: SCIENCE (086)	Max Marks: 30
Date:21.05.2023	Set - 2	Time : 1 hour

General Instructions:

- i) All the questions are compulsory.
- ii) The question paper has five sections and 14 questions.
- iii) Section–A has 6 questions of 1 mark each; Section–B has 2 questions of 2 marks each.
 Section–C has 2 questions of 3 marks each. Section–D has 1 question of 5 marks and Section E has 3 case-based questions of 3 marks each.
- iv) Internal choices have been provided in some questions. A student has to attempt only one of the alternatives in such questions.

NO	QUESTIONS	MARKS	
	SECTION A		
1	Rays from sun converge at a point 15 cm in front of a concave mirror.		
	Where should an object be placed so that size of the image is exactly equal	1	
	to the size of the object?		
	(a) 30 cm in front of mirror		
	(b) 15 cm in front of mirror		
	(c) between 15 cm and 30 cm in front of mirror		
	(d) Less than 15 cm in front of mirror		
2	Which of the following is the correct observation for the thermal	1	
	decomposition reaction of lead nitrate as shown in the below set up?		
	 Test tube holder Boiling tube Lead nitrate Burner (a) Brown powder is formed. (b) Colourless gas which turns lime water milky is evolved. (c) A white precipitate is formed. (d) Brown fumes of nitrogen dioxide is evolved. 		

3	In the given transverse section of leaf identify the layer of cells where	1
	maximum photosynthesis occurs.	
	I III III III III IV	
	(a) I, II	
	(b) II, III	
	(c) III, IV	
	(d) I, IV	

For question numbers 4, 5 and 6, two statements are given- one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below:

a) Both A and R are true, and R is correct explanation of the assertion.

b) Both A and R are true, but R is not the correct explanation of the assertion.

c) A is true, but R is false.

d) A is false, but R is true.

4	Assertion (A): Concave mirrors are used as make-up mirrors.	1
	Reason(R): When the face is held within the focus of a concave mirror, then a	
	diminished image of the face is seen in the concave mirror.	
5	Assertion (A): In the following reaction	1
	$Fe_2O_3 + 2A1 \rightarrow Al_2O_3 + 2Fe$	
	Fe ₂ O ₃ undergoes reduction	
	Reason (R): Aluminium is a reducing agent that reduces Fe ₂ O ₃ to Fe.	
6	Assertion (A): Raw materials needed for photosynthesis are carbon di-oxide,	1
	water and minerals.	
	Reason(R): Nutrients provide energy to the body.	
SECTION B		
7	List two observations that are noticed when an iron nail is put inside copper	2
	sulphate solution. Write chemical equation for the reaction that occurs.	
8	List two characteristics of lungs that make it an efficient respiratory surface.	2
	OR	
	How are the alveoli designed to maximise the exchange of gases?	

SECTION C		
9	On heating copper powder in air, the surface of copper powder becomes	3
	coated with black CuO. How can this black coating be converted into brown	
	copper? Write the chemical equations for the above reactions. Also identify the	
	type of reaction.	
	OR	
	On heating Ferrous sulphate in a boiling tube, ferric oxide, Sulphur dioxide	
	and Sulphur trioxide are formed.	
	a) Write a balanced chemical equation of the reaction	
	b) Write any two observations during the reaction.	
10	c) identify the type of reaction.	2
10	what are the different ways in which glucose is oxidized to provide energy in	3
	section D	
11	SECTION D	5
11	a) An object 4 cm in height, is placed at 15 cm in front of a concave mirror of food longth 10 cm. At what distance from the mirror should a screen he	5
	rocal length to chi. At what distance from the mirror should a screen be	
	image	
	h) Define radius of curvature of spherical mirrors. Find the nature and focal	
	length of a spherical mirror whose radius of curvature is ± 24 cm	
	OR	
	a) Name the type of mirrors used in the design of solar furnaces. Explain how	
	high temperature is achieved by this device.	
	b) The linear magnification produced by a spherical mirror is +3. Analyse this	
	value and state the (i) type of mirror and (ii) position of the object with	
	respect to the pole of the mirror. Draw a ray diagram to show the formation	
	of image in this case.	
	SECTION E	
12	Rear view mirror is device that allows the driver to see rearward. It usually finds	3
	its place at the top of windscreen in side of the cabin. This device is one of the	
	most basic but essential safety devices in the vehicle. It provides assistance to the	
	driver during overtaking, parking in reverse gear etc. Generally, vehicles also	
	nave pair of mirrors attached the body from outside. They are popular as side	
	Almost all modern core mount their side mirrors on the doors, normally at a piller	
	Almost an modern cars mount then side minors on the doors –normany at a pinal	
	Tation than whigs .	
	in the way way	
	and the second	

	a) Define principal focus of a convex mirror	
	b) A ray of light is incident on a convex mirror as shown in Fig.	
	Redraw the diagram after completing the path of the light ray after	
	reflection from the mirror.	
	λ An object is placed at a distance of 20 am in front of a convex mirror of	
	c) An object is placed at a distance of 50 cm in front of a convex mirror of focal langth 15 cm. Write two characteristics of the image formed by the	
	minute minute in the two characteristics of the image formed by the	
12	Inition.	2
15	Oxidation has damaging effect on metals as well as on food. Corrosion is the	3
	process in which metals are eaten up gradually by the action of air, moisture of	
	any other substance present in atmospheric air.	
	a) Define rancialty.	
	b) List any two methods to prevent ranciality.	
1.4	c) what is corrosion of from known as? Explain.	2
14	Digestion is the complex process of turning the food you eat into nutrients, which	3
	the body uses for energy, growth and cell repair needed to survive. The digestion	
	process also involves creating waste to be eliminated. The main organs that make	
	up the digestive system are the mouth, large intestine, small intestine,	
	oesophagus, stomach, rectum and anus. Helping them along the way are the	
	pancreas, gail bladder and liver. The digestive process begins in the mouth. Even	
	before eating begins, the anticipation of eating sumulates grands in the mouth to	
	produce saliva. Digestion works by moving lood inrough the GI tract	
	(gastronnestinal tract). Digestion begins in the mouth with chewing and ends in the small intesting. As food passes through the CI tract, it mixes with directive	
	the small intestine. As food passes through the GI tract, it mixes with digestive	
	Juices, causing large molecules of food to break down into smaller molecules.	
	After you eat, it takes about six to eight hours for food to pass infough your	
	stomach and small intestine. Food then enters your large intestine (colon) for further direction, observation of water and finally alimination of water to	
	food It takes about 26 hours for food to move through the entire color	
	a) Where does the process of direction basin, also name the answire involved	
	<i>a)</i> where does the process of digestion begin, also name the enzyme involved in the process?	
	In the process?	
	b) Wention the main organs of digestion in a proper sequence?	
	in the stomach and intesting?	
	in the stomach and intestine?	

MARKING SCHEME

NO	QUESTIONS	MARKS
SECTION A		
1	(a) 30 cm in front of mirror	1
2	(d) Brown fumes of nitrogen dioxide is evolved.	1
3	(b) II, III	1

4	c. Assertion is true but Reason is false	1	
5	a) Both A and R are true, and R is correct explanation of the assertion.	1	
6	b) Both assertion and reason are true but the reason is not the correct	1	
	explanation of the assertion.	-	
	SECTION B	•	
7	(i) Blue colour changes to green	$\frac{1}{2} + \frac{1}{2}$	
	(ii) Reddish brown coloured deposit on iron nails		
	$Fe + CuSO_4 \rightarrow FeSO_4 + Cu$	1	
8	Any two characteristics of lungs that make it an efficient respiratory surface	1 mark for	
	Or	each point	
		(1+1 =	
	Any two relevant points to maximise the exchange of gases	2marks)	
	SECTION C	-	
9	By passing hydrogen gas over copper oxide	1	
	$2Cu + O_2 \rightarrow 2CuO \text{ (Oxidation)}$	$\frac{1}{2} + \frac{1}{2}$	
	$CuO + H_2 \longrightarrow Cu + H_2O$ (Redox/Displacement)	$\frac{1}{2} + \frac{1}{2}$	
	OR	1	
	(a) $2\text{FeSO}_4 \rightarrow \text{Fe}_2\text{O}_3 + \text{SO}_2 + \text{SO}_3$	1	
	(b) Pale green colour changes to brown, Burning smell of sulphur	1/2 + 1/2	
	(c) Thermal decomposition	/2 1 /2	
		1	
10	Absence of oxygen > Ethanol+Co	1 mark	
	(Yeast) +Energy	for each	
	cytoplasm Lack of oxygen	pathway	
	(3-carbon (In human muscle cells) Lactic acid +Energy	(1+1+1=	
	molecule) Presence of oxygen	3marks)	
	(In mitochondrial) +Energy		
	, Energy		
	(Break down of glucose by various pathways)		
	SECTION D		
11	i. $u = -15$ cm, $h = +4$ cm, $f = -10$ cm.	(1+1+1)	
	1/u + 1/v = 1/f		

		1(1/2+1/2)
	(c) Virtual, erect, diminished, behind the mirror(2 points)	
13	(a) The condition produced by the aerial oxidation of oil and fat	1
	containing food items marked by unpleasant smell and taste.	
	(b) Any two methods	
	(c) The brown coloured substance formed on iron articles when it is	$\frac{1}{2} + \frac{1}{2}$
	exposed to atmospheric air is known as rust and the process is	1
	known as rusting.	
14	(a) Mouth, Maltose	$\frac{1}{2} + \frac{1}{2}$
	(b) mouth, oesophagus, stomach, small intestine, large intestine, rectum	1
	and anus.	
	(c) About six to eight hours	1